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A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function.
Normative development of cortex-wide E/I ratio remains unknown. Here, we nonin-
vasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale
biophysically plausible circuit model to resting-state functional MRI (fMRI) data.
We first confirm that our model generates realistic brain dynamics in the Human
Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive
to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during
fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission
tomography measurement of benzodiazepine receptor density. We then investigate the
relationship between the E/I ratio marker and neurodevelopment. We find that the E/I
ratio marker declines heterogeneously across the cerebral cortex during youth, with
the greatest reduction occurring in sensorimotor systems relative to association sys-
tems. Importantly, among children with the same chronological age, a lower E/I ratio
marker (especially in the association cortex) is linked to better cognitive performance.
This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to
7.9y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition
during normative development. Overall, our findings open the door to studying how
disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that
emerges during youth.

default mode network | control network | neurodevelopment | cognition |
resting state functional connectivity

Healthy brain function requires a delicate balance between neural excitation (E) and
inhibition (I) (1-4). This balance—the E/I ratio—is refined during critical developmental
periods of heightened experience-dependent plasticity (5, 6). E/I imbalances during critical
developmental periods are thought to contribute to the etiology of many psychiatric
disorders (7, 8) and confer vulnerability to cognitive deficits (9, 10). Here, we capitalize
on advances in biophysically plausible large-scale circuit models to chart the normative
development of cortex-wide E/I ratio and uncover links to cognition.

Human cortical development unfolds hierarchically—sensory systems mature earlier,
while association systems follow a more protracted developmental course extending
through adolescence (11, 12). A potential mechanism driving this hierarchical develop-
ment might be the temporal progression of critical plasticity periods along the
sensorimotor-to-association axis (13—16). More specifically, the maturation of GABAergic
inhibitory circuitry involving parvalbumin positive (PV) interneurons suppresses
stimulus-irrelevant activity, yielding a higher signal-to-noise ratio (13). The maturation
of PV interneurons also modulates long-term potentiation by enforcing a narrower spike
integration window (17). Overall, the maturation of the inhibitory circuitry facilitates
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the experience-dependent pruning of excitatory pyramidal neuronal connections via the ~ The authors declare no competing interest.
Hebbian mechanism, triggering a critical plasticity period (18-20). Therefore, a hallmark
feature of the critical period development is a reduction in the E/I ratio (21, 22). While
the hierarchical progression of inhibitory development is documented in animal models
(14, 23), it is unclear whether the same mechanisms exist in humans, extend to the evo-
lutionarily expanded association cortex, and impact cognitive ability.

Studying E/I ratio development in vivo in humans is challenging due to limitations in
noninvasive neuroimaging techniques. MR spectroscopy studies suggest changes in the balance
of excitatory and inhibitory neurotransmitter levels in single brain regions during development
(24, 25). A recent study used a machine learning marker trained with pharmacological-functional
MRI data to provide evidence of E/I ratio reduction in the association cortex during develop-
ment (26). However, these past studies were limited to partial portions of the cortex, so
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normative development of cortex-wide E/I ratio remains unclear.
Indirect estimates of whole-cortex E/I ratio have provided insights
into autism spectrum disorder in adults and Alzheimer’s Disease
(27-29), but these approaches mostly lack a direct mapping to an
underlying biophysically plausible model of excitatory and inhibitory
dynamics.

Biophysically plausible large-scale circuit models of coupled
brain regions have provided mechanistic insights into spontaneous
brain dynamics (30-32). However, most large-scale circuit models
assume that local synaptic properties are spatially uniform across
brain regions (9, 27, 33), which lacks biological plausibility.
Indeed, spatial heterogeneity in excitatory and inhibitory cell types
(34-36) might be a driver of large-scale brain dynamics (37, 38).
Studies have shown that incorporating spatial heterogeneity across
local synaptic parameters generates more realistic spontaneous
brain dynamics (39, 40). Our previous study (41) demonstrated
that parameterizing local synaptic parameters with anatomical and
functional gradients led to dramatically more realistic brain
dynamics in adults. However, we utilized a large-scale circuit
model (42) that did not differentiate among excitatory and inhib-
itory neural populations, so the E/I ratio could not be derived.

Here, we investigate the development of cortical E/I ratio over
youth and its association with cognitive ability. We apply our
previous approach (41) to the feedback inhibition control (FIC)
model with coupled excitatory and inhibitory neuronal popula-
tions (33). The resulting parameteric FIC (pFIC) model is used
to derive a potential marker of E/I ratio. We first confirm that the
pFIC model yields realistic brain dynamics in healthy young adults
from the Human Connectome Project (HCP; 43). Using a phar-
macological IMRI dataset (44), we show that the E/I ratio marker
is sensitive to E/I ratio reduction induced by the GABA-agonist
alprazolam. Then, using the Philadelphia Neurodevelopmental
Cohort (PNGC; 45, 46), we find that the E/I ratio declines across
the cortex during youth. Furthermore, a lower E/I ratio indexes
greater cognitive ability, with the strongest relationships observed
in association cortex. We generalize the link between E/I ratio and
cognitive ability in a younger GUSTO (Growing Up in Singapore
with Healthy Outcomes) cohort (47). Overall, our study suggests
that E/I ratio maturation might be a driver of healthy neurocog-
nitive development during youth.

1. Results

1.1. Overview. We first evaluated the optimization of the spatially
heterogeneous pFIC model in the HCP dataset (Fig. 1A4). The
biological plausibility of the estimated marker of E/I ratio
was then evaluated using pharmacological fMRI involving
GABAergic benzodiazepine alprazolam. Finally, we investigated
developmental changes and cognitive effects of E/I ratio in the
PNC dataset. Assocations with cognition were replicated in the

GUSTO cohort.

1.2. Optimization of the pFIC Model. We randomly divided
1004 HCP participants (43, 48) into 3 nonoverlapping training
(N = 335), validation (N = 335), and test (N = 334) sets. The
Desikan—Killiany anatomical parcellation (49) with 68 cortical
regions of interest (ROIs) was used to generate group-level
structural connectivity (SC), static functional connectivity (FC),
and FC dynamics (FCD) from the training, validation, and test
sets separately. To compute FCD for each fMRI run, a 68 x 68
FC matrix was computed for each sliding window of length
~60 s. The 68 x 68 FC matrices were then correlated across the
1118 windows, yielding a 1118 x 1118 FCD matrix (41). The
FCD matrix has been shown to reflect temporal fluctuations in
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resting-state FC that are not captured by static FC (50, 51). See
SI Appendix, Supplementary Methods S2 for details.

The FIC model (33) is a neural mass model obtained by mean
field reduction of a spiking neuronal network model (52, 53). The
model comprises ordinary differential equations (ODEs) at each
cortical region describing the dynamics of excitatory and inhibi-
tory neuronal populations (Fig. 1 B, 7op). The local dynamics are
driven by recurrent connections within separate excitatory and
inhibitory populations, as well as connections between excitatory
and inhibitory populations. Greater excitatory-to-excitatory recutr-
rent strength (wgp) and smaller inhibitory-to-excitatory connec-
tion strength (wyp) amplify synaptic currents of the excitatory
population. Similarly, greater excitatory-to-inhibitory connection
strength (wg;) and smaller inhibitory-to-inhibitory recurrent
strength (wy;) amplify synaptic currents of the inhibitory popula-
tion. Neuronal noise in each cortical region is controlled by the
noise amplitude o. Finally, the excitatory populations of the
regional local models are connected via the SC matrix, scaled by
a global constant G.

Following previous studies (33, 39), wy; was set to one and wyg
was automatically set to maintain a uniform baseline excitatory
firing rate of around 3 Hz. Excitatory-to-excitatory recurrent
strength (wgp), excitatory-to-inhibitory connection strength (wg),
regional noise amplitude (6) and the SC scaling constant (G) were
estimated using our previous approach (41). More specifically,
Wep> Wi, and 6 were parameterized as a linear combination of the
principal resting-state FC gradient (54) and T1w/T2w myelin
estimate (55), resulting in 9 unknown linear coefficients and 1
unknown parameter G. We refer to the resulting model as the
pFIC model.

The 10 pFIC parameters were estimated using the covariance
matrix adaptation evolution strategy (CMA-ES) (56) by minimiz-
ing the difference between simulated and empirical fMRI data.
More specifically, agreement between empirical and simulated FC
matrices was defined as the Pearson’s correlation (7) between the
z-transformed upper triangular entries of the two matrices. Larger
r indicates more similar static FC. However, Pearson’s correlation
does not account for scale difference, so we also computed the
absolute difference (d) between the means of the empirical and
simulated FC matrices (39). A smaller & indicates more similar
static FC. The inclusion of & was necessary to prevent overly syn-
chronized fMRI signals (S Appendix, Fig. S1). Finally, we do not
expect the brain states of two participants to be the same at any
given timepoint # during the resting state, i.e., there is no temporal
correspondence between participants in the resting state. Because
FCD was computed based on sliding window FC, there was sim-
ilarly no temporal correspondence between simulated and empir-
ical FCD matrices. Therefore, disagreement between the simulated
and empirical FCD matrices was defined as the Kolmogorov—
Smirnov (KS) distance, following previous studies (41, 50). The
KS distance was defined as the maximum distance between the
cumulative distribution functions obtained by collapsing the
upper triangular entries of simulated and empirical FCD matrices,
so no temporal correspondence was assumed (more details in
SI Appendix, Supplementary Methods S10). The overall cost was
defined as (1 —7) +  + KS. A smaller cost indicates better agree-
ment between simulated and empirical fMRI.

1.3. The pFIC Model Generates Realistic fMRI Dynamics. We
first demonstrate that the parametrization of the local synaptic
parameters with T1w/T2w and FC gradient led to more realistic
brain dynamics than spatially homogeneous parameters (Fig. 24).
We applied CMA-ES to the HCP training set to generate 500
candidate model parameter sets. The 500 parameter sets were
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Fig. 1. Workflow and schematic of the pFIC model. (A) Young adults from the HCP were used to evaluate the optimization of the spatially heterogeneous pFIC
model. Pharmacological fMRI with benzodiazepine alprazolam was then used to evaluate the biological plausibility of the estimated E/I ratio. Next, the pFIC
model was used to investigate the development of cortex-wide E/| ratio and its association with cognitive ability in the PNC dataset. Cognitive associations were
replicated in a sample of 7-y-olds from the GUSTO cohort. HCP logo is used with permission from the HCP team. (B) The FIC model (33) is a neural mass model
obtained by mean field reduction of spiking neuronal network models. The FIC model consists of differential equations at each cortical region governing the
neural dynamics of excitatory and inhibitory neuronal populations (“E” and “I" respectively in the Right panel). A red triangle indicates an excitatory connection.
Ablue circle indicates an inhibitory connection. “w," indicates the connection strength from neuronal population x to neuronal population y. For example, “w,¢"
indicates the connection strength from the inhibitory population to the excitatory population. The regional models are connected by excitatory connections
parameterized by a SC matrix. For a given set of model parameters, time courses of excitatory (Sg) and inhibitory (S,) synaptic gating variables (representing the
fraction of open channels) can be simulated. The E/I ratio was defined as the ratio between the temporal average of S; and S,. Local synaptic parameters were

estimated using the same approach as our previous study (41). We refer to the resulting model as the pFIC model.

evaluated in the HCP validation set. The top 10 parameter sets
from the HCP validation set were used to simulate FC and FCD
using SC from the HCP test set, which were then compared with
empirical FC and FCD from the HCP test set. A strong agreement
between simulated and empirical FC (as well as between simulated
and empirical FCD) would suggest that the pFIC model was able
to generate realistic brain dynamics.

Fig. 2Bvisualizes the correlation between empirical and simulated
FC in the HCP test set (based on the best model parameters from
the validation set). Across the 10 best parameter sets from the valida-
tion set, correlation between empirical and simulated static FC was
0.71 +0.005 (mean + SD) in the test set. As a reference, correlation
between empirical FC and SC in the test set was 0.48. On the other
hand, the absolute difference between the means of the empirical and
simulated FC matrices was 0.11 + 0.015 in the test set. This suggests
that the pFIC model was able to generate realistic FC.

Fig. 2C shows the empirical FCD from a single run of a repre-
sentative HCP test participant. Fig. 2D shows the simulated FCD

PNAS 2024 Vol.121 No.23 e2318641121

using the best model parameters (from the validation set) and SC
from the test set. Off-diagonal red blocks in both empirical and
simulated FCD indicated recurring FC patterns that were not sim-
ply due to temporal autocorrelation. Similarity in the amount of
off-diagonal red blocks between empirical and simulated FCD sug-
gests that the pFIC model was able to generate realistic FCD. Across
the 10 best candidate sets from the validation set, the KS distance
between empirical and simulated FCD was 0.18 + 0.028 in the
HCP test set. Disagreement between simulated and empirical fMRI
appeared more pronounced in posterior regions, but the pattern of
disagreement was not correlated with the RSFC gradient or the
T1w/T2w ratio map (SI Appendix, Figs. S2 and S3).

Overall, the pFIC model was able to generate realistic FC and
FCD, yielding an overall cost of 0.58 + 0.018 in the HCP test
set (Fig. 2E). Parameterizing model parameters with only the
principal FC gradient or only T1w/T2w ratio map led to worse
(higher) cost in the HCP test set (Fig. 2E). Most large-scale

circuit model studies assume spatially homogeneous parameters.
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Fig. 2. The pFIC model generates more realistic fMRI dynamics than the spatially homogeneous FIC model. (A) The CMA-ES algorithm (41, 56) was applied to
the HCP training set to generate 500 sets of model parameters. The top 10 parameter sets from the validation set were evaluated in the test set. (B) Agreement
(Pearson's correlation) between empirical and simulated static FC in the HCP test set. (C) Empirical FCD from an HCP test participant. (D) Simulated FCD from the
pFIC model using the best model parameters (from the validation set) and SC from the test set. (E) Total test cost of the pFIC model compared with three control
conditions: 1) local synaptic parameters parameterized by only principal resting-state FC gradient, 2) local synaptic parameters parametrized by only T1w/T2w
ratio map and 3) local synaptic parameters constrained to be spatially uniform. The boxes show the interquartile range (IQR) and the median. Whiskers indicate
1.5 IQR. Black crosses represent outliers. * indicates that the pFIC model achieved statistically better (lower) test cost.

When local synaptic parameters (wgg, wg;, and 6) were con-
strained to be uniform across brain regions (33, 57) and opti-
mized by CMA-ES, the cost was poor in the test set (Fig. 2E).
These results emphasize the importance of parameterizing local
synaptic parameters with spatial gradients that smoothly varied
from sensory-motor to association cortex. Consistent with our
previous study (41), the T1w/T2w and FC gradient were com-
plementary in the sense that combining the two spatial maps led
to more realistic fIMRI dynamics.

40f12 https://doi.org/10.1073/pnas.2318641121

1.4. Estimated E/I Ratio Is Sensitive to the Effect of Benzodiazepine
Alprazolam. In the previous section, we showed that the pFIC model
could be effectively optimized to generate realistic IMRI dynamics.
Here, we evaluated the biological plausibility of the estimated E/I ratio
in a pharmacological-fMRI dataset (44) comprising 45 participants,
who completed a placebo-controlled double-blind fMRI study
with benzodiazepine alprazolam. Alprazolam is a benzodiazepine
that enhances GABAergic signaling at GABA, receptor subunits,
including a, , 5 sand y, 5 (58, 59). Alprazolam enhances GABAergic
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inhibitory signaling via positive allosteric modulation, thus reducing
the E/I ratio (60). Therefore, we hypothesized that the E/I ratio
estimated with the pFIC model would be lower during the alprazolam
condition compared with the placebo condition.

The 45 participants were equally divided into training, valida-
tion, and test sets. Group-level SC, first principal FC gradient, and
T1w/T2w ratio maps from the HCP dataset were used in the
following analysis. For each experimental condition (placebo or
alprazolam), 250 candidate parameter sets were generated from
the condition’s training set. The top 10 parameter sets from the
validation set were evaluated in the test set. The costs of the 10
parameter sets generalized well to the test set (S/ Appendix, Fig. S4),
suggesting that there was no overfitting in the validation set.

One challenge in analyzing this dataset was that the fMRI data
were acquired with a limited field of view. Therefore, 26 out of 68
Desikan-Killiany ROIs with less than 50% coverage (SI Appendix,
Fig. S5) were not considered during the estimation of the model
parameters. The estimated model parameters were extrapolated to
the entire cortex (see ST Appendix, Supplementary Methods S11 for
details) and used to simulate the excitatory (Sg) and inhibitory
(Sp time courses (Fig. 1B). Motivated by rodent studies, the E/I
ratio was defined as the ratio between the temporal average of Sg
and S, (61).

An E/I ratio contrast was computed by subtracting the E/I
ratio estimated during the drug (alprazolam) session from the E/I
ratio estimated during the placebo session. Since alprazolam is
expected to reduce the E/I ratio, we hypothesized that the E/I
ratio would be lower during the alprazolam condition, yielding
a positive E/I ratio contrast. Consistent with our hypothesis, the
E/1 ratio contrasts of all regions were positive (Fig. 3B). Sixty-seven
out of 68 regions exhibited E/I ratio contrasts statistically different
from zero after correcting for multiple comparisons with a false
discovery rate (FDR) of ¢ < 0.05. We note that there was no
motion difference between the drug and placebo fMRI sessions
(P> 0.1). These results suggest that the E/I ratio estimated by the
pFIC model was sensitive to the pharmacological enhancement
of inhibitory activities.

Since the distribution of benzodiazepine receptors (BZR) density
is not spatially uniform (63), we hypothesized that the E/I ratio
contrast would also not be spatially uniform, and would align with
BZR density. Supporting this, we found that the E/I ratio contrast
exhibited a spatial gradient with the strongest effects in sensory-
motor networks and the weakest effects in control and default net-
works (Fig. 3B). Fig. 3C shows the spatial distribution of BZR
density estimated from in vivo positron emission tomography in a
separate group of participants (63). Regions with greater BZR
density exhibited greater reduction in E/I ratio during the drug
session (7= 0.52; two-tail spin test P = 0.016; Fig. 3D). Therefore,
the spatial distribution of E/I ratio contrast was biologically
plausible.

To evaluate robustness, we repeated the above analyses 5 times
with different random splits of the 45 participants into training,
validation, and test sets. The results were similar across the 5 splits
(SI Appendix, Figs. S6 and S7). Results from the most representative
split are shown in Fig. 3. Using this most representative split, we
performed several additional sensitivity analyses. In the previous
analyses, the acceptable excitatory firing rate was constrained to be
between 2.7 Hz and 3.3 Hz. Relaxing the thresholds to between
2.5 Hz and 3.5 Hz yielded similar results (S Appendix, Fig. S8).
Changing the ROI coverage threshold from 50 to 60% also yielded
similar results (S7 Appendix, Fig. S9). We repeated the analysis using
a 100-region homotopic functional parcellation (64), which also
yielded similar results (S7 Appendix, Fig. $10). Pairwise comparisons
between the control analyses are found in S/ Appendix, Fig. S11.

PNAS 2024 Vol.121 No.23 e2318641121

Similar results were obtained with log-transformation or square root

of BZR density (S Appendix, Fig. S12).

1.5. The E/I Ratio Declines with Development in Youth. Having
demonstrated that the E/I ratio estimates were sensitive to the
alprazolam-induced enhancement of inhibitory activities, we next
explored how the E/I ratio changes during development in the
PNC (45, 46). We hypothesized that the estimated E/I ratio would
decline with age.

After data preprocessing and quality control, we obtained a
sample of 885 participants aged 8 to 23 y (Fig. 44). Participants
were sorted according to age and evenly divided into 29 age
groups, so each group comprised 30 or 31 participants. Within
each age group, 15 participants were randomly selected as the
validation set, while the remaining participants were assigned to
the training set. For each age group, 250 candidate model param-
eter sets were generated from the group’s training set using
CMA-ES and evaluated in the group’s validation set; the parameter
set with the lowest validation cost was used to estimate the regional
E/I ratio across the cortex.

We performed linear regression between age and mean cortical
E/1 ratio (i.e., E/I ratio averaged across the whole cortex), as well as
between age and regional E/I ratio. Mean cortical E/I ratio declined
throughout child and adolescent development (7= -0.51, 2= 0.004;
Fig. 4B). This E/1 ratio reduction was statistically significant for all
cortical regions (FDR ¢ < 0.05; Fig. 4C). Furthermore, the rate of
E/I ratio decrease exhibited a spatial gradient with sensory-motor
regions exhibiting a greater rate of E/I ratio decrease (i.e., more neg-
ative slope) compared with association networks (Fig. 4D).

To evaluate the robustness of these effects, the PNC analyses
were repeated 5 times with different splits of the participants
(within each age group) into training and validation sets. The
results were similar across the 5 random splits of the data
(SI Appendix, Figs. S13 and S14). We conducted several additional
sensitivity analyses using the most representitve split (which was
shown in Fig. 4). Relaxing the firing rate thresholds to between
2.5 Hzand 3.5 Hz yielded similar results (S7 Appendix, Fig. S15),
as did using a 100-region homotopic parcellation (64) (S Appendix,
Fig. $16). Pairwise comparisons between the control analyses are
found in SI Appendix, Fig. S17. Finally, consistent with the liter-
ature, younger participants exhibited higher head motion during
the fMRI scan. Therefore, as a control analysis, we regressed out
mean framewise displacement from the E/I ratio estimates of each

age group, yielding similar results (S/ Appendix, Fig. S18).

1.6. Lower E/I Ratio Is Associated with Better Cognition
within the Same Age Group. Having shown that older children
exhibited lower E/I ratio (Fig. 4B), we next evaluated the cognitive
implications of such a decline in the E/I ratio as part of normative
development. We hypothesize that a lower E/I ratio would be
associated with better cognition. To test this hypothesis, we
compared the E/I ratio of PNC participants who were matched
on age but differed in cognitive performance.

Participants in the PNC completed the Penn Computerized
Neurocognitive Battery, a 12-task battery that has been previously
summarized using an overall (domain-general) measure of accuracy
as well as three domain-specific factor scores (65). Participants were
divided into 14 high-performance groups and 14 low-performance
groups based on the overall accuracy measure. Each high-
performance group was age-matched to a low-performance group
(Fig. 5A). Each low-performance or high-performance group com-
prised 31 or 32 participants. For each group, 15 participants were
randomly assigned to the validation set, while the remaining
participants were assigned to the training set. For each group,
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Fig. 3. E/lratio estimate is sensitive to the effect of benzodiazepine alprazolam. (A) Seven resting-state networks (62). (B) Left: Regional E/I ratio contrast overlaid
with the boundaries (black) of seven resting-state networks. Sixty-seven out of 68 regions showed significant E/I ratio difference between placebo and drug
sessions after FDR correction (g < 0.05). E/I ratio difference was greater than zero for all regions, consistent with lower E/I ratio during the alprazolam session.
Right: E/| ratio differences exhibited a spatial gradient with higher differences in sensory-motor regions compared with regions in the control and default
networks. The boxes show the interquartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent outliers. (C) Spatial distribution of
BZR density (pmol/mL) from in vivo positron emission tomography in a separate group of participants (63). (D) Higher regional BZR density was associated with
larger E/l ratio changes during the drug session (r = 0.52, two-tail spin test P = 0.016).

250 candidate parameter sets were generated from the training set The high-performance group exhibited a lower mean cortical E/I
and the top parameter set from the validation set was used to  ratio than the low-performance group (two-tailed t test P=1.2 x 107%;
estimate the E/I ratio; we compared the E/I ratio between the  Fig. 5C). There was no motion difference between high-performance
high- and low-performance groups. and low-performance groups (2> 0.2). To test for domain specificity,
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Fig. 4. E/lratio continuously declines throughout child and adolescent development. (A) Age distribution of 885 PNC participants (mean = 15.66, SD = 3.36, min
=8.17, max = 23). (B) Participants in older age groups exhibited lower E/I ratio (r=-0.51, P = 0.004). Participants were divided into 29 nonoverlapping age groups.
There are 29 dots in the scatter plot, corresponding to the 29 age groups. The shaded area depicts 95% Cl of the linear relationship. (C) Spatial distribution of
linear regression slope between regional E/I ratio and age. The values represent the rate of E/I ratio changes during development. All slopes were negative and
significant (FDR g < 0.05). (D) The slopes exhibited a spatial gradient with sensory-motor networks showing the fastest E/I ratio reduction and association networks
showing slower E/I ratio reduction. The boxes show the interquartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent outliers.

we also compared the E/I ratio for the three domain-specific factor
scores (complex reasoning, memory, and social cognition), but
observed no statistical difference after correcting for multiple com-
parisons (S Appendix, Fig. S19).

Having found global differences in the E/I ratio between the
high and low cognitive performance groups, we next evaluated
regional effects (Fig. 5D). We found that E/I ratio differences
between low-performance and high-performance groups were
larger in control and default networks, compared with sensory-
motor regions (Fig. 5F; all FDR ¢ <0.05). Notably, the effect sizes
of these regional differences in the E/I ratio aligned well with the
sensorimotor-association (S-A) axis of cortical organization (66),
such that effect sizes were lowest at the sensorimotor pole and
largest at the association pole (Fig. 5F). Spearman’s correlation
between effect sizes and S-A axis ranks was 7 = 0.87 (two-tailed
spin test P < 0.001; Fig. 5G). Overall, these results suggest that a
more mature E/I ratio—especially in higher-order association
cortex—is linked to more mature cognition.

To evaluate the robustness of these results, we repeated these analyses
5 times with different random training-validation splits of participants
within each high-performance group and each low-performance
group. The results were similar across the 5 splits (S7 Appendix,
Figs. $20-524; the most representative split is displayed in Fig. 5).

PNAS 2024 Vol.121 No.23 e2318641121

Within the most representative split, we found that relaxing the thresh-
olds to between 2.5 Hz and 3.5 Hz yielded similar results (S Appendix,
Fig. §25) as did the use of a 100-region homotopic functional parcel-
lation (64) (SI Appendix, Fig. S26). Pairwise comparisons between the
control analyses are found in S/ Appendix, Fig. S27.

1.7. Results Generalize to a Younger Asian Cohort. As a final step,
we evaluated whether the link between the E/I ratio and cognition
generalized to a group of younger participants of different ancestry.
This was motivated by recent concerns that relationships between
resting-fMRI and behavior may not generalize well across ethnic
groups (67). We utilized the GUSTO dataset (47), which included
154 participants (after quality control) with a mean age of 7.5 y.
An overall cognitive performance score was obtained by a principal
component analysis of five cognitive tests. Participants were then
divided into groups with high and low cognitive performance. The
ages were well-matched between the high- and low-performance
groups (Fig. 6 A and B). There was no motion difference between the
high- and low-performance groups during the fMRI scans (7> 0.1).

Replicating PNC results, we found that the high-performance
group exhibited a lower E/I ratio in higher-order association cortex
than the low-performance group (Fig. 6C). Differences were largest
in the default and control networks (Fig. 6D). Statistical significance
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Fig.5. Lower E/I ratio is associated with better cognitive performance within the same age group in the PNC dataset. (A) Boxplots of age, (B) “overall accuracy,” and (C)
mean cortical E/I ratio of high-performance and low-performance (overall accuracy) groups. The mean cortical E/I ratio of the high-performance group was significantly
lower than that of the low-performance group (FDR g < 0.05). (D) Spatial distribution of effect size of regional E/I ratio difference between high-performance and low-
performance groups. All regions were significant after FDR correction with g < 0.05. () Effect size of E/I ratio differences in cognition is larger in control and default
networks compared with sensorymotor regions. The boxes show the interquartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent
outliers. (F) ROI rankings based on the S-A axis (66). Lower ranks were assigned to ROIs that were more toward the sensorimotor pole; higher ranks were assigned
to ROIs that were more toward the association pole. (G) Agreement between effect size of E/| ratio difference and S-A axis rank. Spearman’s correlation r = 0.87, two-
tailed spin test p <0.001.

was evaluated using a permutation test, where the null distribution ~ note that only 29 (out of 68) regions were significant after FDR
was constructed by randomly assigning participants into high or  correction with ¢ < 0.05. These 29 regions were all in association
low-performance groups and then re-estimating the E/I ratio. We  cortex. By contrast, differences in the E/I ratio between cognitive
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performance groups were largely not significant in sensory-motor
networks. As in the PNC, we found the effect sizes of these cognitive
differences aligned with the S-A axis (= 0.56, two-tailed spin test
P=0.01; Fig. 6E). These results in a younger Asian cohort emphasize
the robustness and generalizability of our findings.

2. Discussion

We first established that the pFIC model could generate realistic
fMRI dynamics in a large adult dataset. We then demonstrated
that our E/I ratio marker was sensitive to increased inhibitory
activity induced by benzodiazepine alprazolam. In a large devel-
opmental sample from North America, we found that the E/I ratio
marker decreased with age. We also demonstrated that a lower E/I
ratio marker—reflective of more mature cortex—was associated
with better cognitive performance, particularly in the transmodal
association cortex. Critically, these findings generalized to a
younger Asian cohort. Together, our findings provide evidence
that refinements in the cortical E/I ratio persist into adolescence,
suggesting that prolonged E/I-linked developmental plasticity in
the association cortex supports continued neurocognitive devel-
opment. We speculate that insufficient refinement of the E/I ratio
during development may create a vulnerability to cognitive defi-
cits, with potentially important implications for transdiagnostic

psychopathology.

PNAS 2024 Vol.121 No.23 e2318641121

The E/I ratio is challenging to be noninvasively investigated in
humans. Post-mortem studies have established how the expres-
sions of E/I relevant genes vary across the cortex (35, 68, 69). On
the other hand, there is a lack of a direct mapping of in vivo
neuroimaging signals with excitatory and inhibitory neurobiology,
as well as constrained spatial coverage and specificity of available
E/I techniques (24-26). Here, we capitalized on recent develop-
ments in biologically interpretable computational modeling of
cortical circuits to gain insight into the E/I ratio from fMRI data.
We fitted a large-scale circuit model with interacting excitatory
and inhibitory populations to resting-state fMRI and calculated
the E/I ratio from the time courses of excitatory and inhibitory
synaptic gating variables. Our E/I ratio marker captured reduc-
tions in the E/I ratio induced by alprazolam, a positive allosteric
modulator that increases the effectiveness of GABAergic signaling
(70). Furthermore, the spatial pattern of benzodiazepine-related
E/1 reductions described by the model was correlated with the
distribution of benzodiazepine-sensitive GABA receptors from
positron emission tomography (63). Interestingly, one of the phar-
macological targets of benzodiazepines is GABA, o, receptors
(70). Increases in GABA signaling at GABA, «, receptors have
been shown to trigger the onset of developmental critical periods
in animal models (71), indicating that the pFIC model is well
equipped to study development-linked changes in inhibitory sig-
naling in the human brain.

https://doi.org/10.1073/pnas.2318641121
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We found that the E/I ratio decreased across the cortex throughout
child and adolescent development. E/I ratio declined with age across
all cortical systems, but the magnitude of decline varied along a
unimodal-transmodal cortical hierarchy. Specifically, by age 22, the
E/1 ratio had declined the most in unimodal sensory territories, such
as the visual and somatomotor systems, and the least in transmodal
systems like the default and frontoparietal control systems. Differences
in E/I development across these systems may be linked to differences
in their maturational time courses. The development of cortical inhib-
itory circuitry is well-established as a central mechanism that controls
the timing and progression of critical periods of development (21,
72). Initially, the development of inhibitory circuitry lags behind that
of excitatory pyramidal cells, leading to an early increase in the local
E/I ratio (73). Later, experience and evoked activity stimulate the
development of inhibitory circuitry (21)—particularly fast-spiking
parvalbumin-positive interneurons and GABA,, «, receptors—which
begins to reduce the E/I ratio, facilitating experience-dependent plas-
ticity and triggering the opening of the critical period window (22,
71, 72). As the critical period progresses, excitatory synapses are
pruned, further reducing the E/I ratio (74, 75). Finally, as inhibitory
circuitry reaches maturity, a different set of plasticity braking factors
are triggered, including the formation of intracortical myelin and
perineuronal nets, which stabilize cortical circuits and close the critical
period window (6, 76). Consequently, an initial decrease in the E/I
ratio can signify thata critical period has been triggered and the cortex
is in a relatively immature, plasticity-permissive state. As the E/I ratio
reduces further, it may signify that the cortex has reached a mature,
plasticity-restrictive state, with pruned excitatory synapses, fully devel-
oped inhibitory circuitry, and mature plasticity brakes that have closed
the critical period (6). As such, the greater reduction in the E/I ratio
we observe in sensory systems relative to association systems may
reflect that sensory systems have reached a higher degree of maturity
by the end of the adolescent years while association systems remain
in a more immature, plasticity-permissive state. To test this hypothesis,
future work could use multimodal neuroimaging that combines our
pFIC approach with other markers of critical period closure—such
as intracortical myelination—to evaluate biologically relevant signa-
tures of when windows of critical period plasticity open and close
during youth.

Our findings align with a wealth of literature demonstrating
differences in the development of sensorimotor and association
cortices. Studies haveshown that FC, functional topography, structure—
function coupling, and intrinsic dynamics follow different devel-
opmental trajectories between sensory and associative cortical
systems (16, 77-79). For example, while the intrinsic fluctuation
amplitude of sensory systems linearly decline with age, association
systems follow curvilinear developmental trajectories that peak over
adolescence before declining into adulthood (80). Importantly,
other recent work has shown that the development of intracortical
myelin, which functions as a brake on plasticity, also varies along
the sensory-to-association axis (11, 81). Specifically, the period of
peak growth in intracortical myelin occurs during childhood in the
sensorimotor cortex, yet not until adolescence in the association
cortex. Coupled with our current findings of a greater reduction in
the E/I ratio of sensory systems (versus a weaker reduction in asso-
ciation systems), this work jointly indicates that sensorimotor sys-
tems are more mature by the onset of adolescence, whereas the
association cortex may remain more plastic during the adolescent
period. This interpretation aligns with a recent study showing that
an fMRI marker of functional plasticity peaks during early adoles-
cence in the association cortex but continuously declines throughout
childhood and adolescence in the sensorimotor cortex (80).

The protracted development of the E/I ratio throughout adoles-
cence may facilitate healthy cognitive development. We found that

100f 12 https://doi.org/10.1073/pnas.2318641121

better cognitive ability was associated with a lower E/I ratio across the
cortex in groups of age-matched youth. Since the E/I ratio norma-
tively decreased with age, this effect may indicate that more mature
cognitive performance is associated with a more mature cortical E/I
ratio. As such, the E/I ratio may capture the aspects of development
independent of chronological age. Importantly, the magnitude of the
effect was not spatially uniform. The greatest effect sizes were observed
in association cortex, while the weakest effect sizes were observed in
sensory cortex. This pattern is consistent with prior work showing
that functional properties of the association cortex are most strongly
related to cognitive performance across development (79, 82). Our
findings also support theoretical predictions from a biophysically
based cortical circuit model of decision-making that a balanced E/I
ratio supports optimal decision-making (9). Together, our results
suggest that although E/I ratio continues to develop throughout the
cortex during adolescence, the development of the E/I ratio in the
association cortex is particularly relevant to maturing cognition.
Critically, we generalized associations between the E/I ratio and cog-
nitive ability in an independent sample of youth collected from a
different continent, demonstrating the robustness of these effects
across both populations and recruitment sites.

Our findings have important implications for understanding
the emergence of psychopathology during adolescence. Though a
prolonged period of developmental plasticity in the association
cortex may be essential to healthy cognitive development, it may
also represent a period of vulnerability to atypical developmental
outcomes. A growing body of work has begun to implicate a
disrupted E/I ratio in the prefrontal cortex as a central mechanism
in neuropsychiatric disorders such as depression and psychosis
spectrum disorders (83-85).

These conditions are thought to involve an atypically high E/I
ratio in the prefrontal cortex (86-89). Future studies can use our
model to understand how the atypical development of E/I ratio
in association cortex may lead to transdiagnostic cognitive dys-
function in developmental psychopathology.

2.1. Limitations and Future Work. Parameterization of local
circuit parameters with the T1w/T2w ratio map and the FC
gradient yielded more realistic fMRI dynamics than either
gradient alone or if local circuit parameters were constrained to
be spatially uniform. Future studies can explore more generic
parameterizations, such as geometric eigenmodes (90).

The current study utilized parcellations with only 68 or 100
regions. Simulating the FIC model with a higher spatial resolution
is computationally challenging because the number of inter-regional
connections increases quadratically with the number of regions.
Future work can explore more efficient algorithms. Furthermore,
our analyses were limited to linear modeling of E/I ratio across a set
of age bins. Future work in larger samples may facilitate the estima-
tion of nonlinear developmental trajectories of E/I ratio.

Finally, our approach can also be used to study E/I ratio changes
during cognitive tasks or during a naturalistic paradigm. When
applying the pFIC model to a different dataset, dataset-specific
SC, T1w/T2w ratio map and FC gradient can be used, although
that might not be necessary. For example, SC, T1w/T2w ratio
map, and whole-cortex FC gradient were not available in the
alprazolam dataset, so we utilized SC, T'1w/T2w, and whole-cortex
FC gradient from the HCP dataset.

2.2. Conclusion. Our results underscore the utility of large-scale
circuit models to provide insights into the mechanisms driving
neurocognitive development. We find thatan essential aspect of healthy
brain function—the cortical E/I ratio—is refined during childhood
and adolescence. We also provide evidence that this hallmark critical
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period mechanism is associated with improved cognitive ability. Our
findings pave the way for future work to investigate how disrupted E/I
balance may lead to cognitive dysfunction in psychopathology that
emerges during youth and is characterized by atypical development
of the association cortex that undergoes protracted maturation.

3. Methods

We utilized the HCP $1200 release (N = 1,004; Fig. 2), pharmacological (ben-
zodiazepine alprazolam) fMRI dataset (N = 45; Fig. 3), PNC dataset (N = 885;
Figs. 4 and 5) and the GUSTO cohort (N = 154; Fig. 6). In the case of HCP, we
used the publicly available ICA-FIXMSMAIl resting-state fMRI data in fsLR surface
space. For alprazolam and PNC datasets, we used preprocessed fMRI data from
our previous study, which involved slice time correction, motion correction, field
distortion correction, and anatomical CompCor (26). In the case of the alprazolam
dataset, no resting-state fMRI was available, so we used task-fMRI after regressing
out the task regressors, following our previous study (26). To be consistent, the
GUSTO dataset was also preprocessed in a similar fashion as the PNC dataset.
More details can be found in SI Appendix, Supplementary Methods.

After preprocessing, static FC was computed using Pearson’s correlation for
all datasets. FCD was computed using a sliding window length of ~60 s, cor-
responding to windows of length 83, 20, 20, and 23 for the HCP, alprazolam,
PNC, and GUSTO datasets, respectively. The window length followed best practice
recommendations from previous studies (51,91). SCwas computed based on the
number of streamlines generated with probabilistic tractography using MRtrix3
(92). More details can be found in S/ Appendix, Supplementary Methods.

The pFIC model (33) was fitted to the different datasets using the CMA-ES
(56). The fitted pFIC model was used to simulate the synaptic gating variable
time courses Sg and S, of the excitatory and inhibitory populations, respectively.
The E/l ratio was defined as the ratio between the temporal average of Sg and S,.
More details can be found in S/ Appendix, Supplementary Methods.

The HCP data collection was approved by a consortium of institutional review
boards (IRBs) in the United States and Europe, led by Washington University
in St Louis and the University of Minnesota (WU-Minn HCP Consortium). Data
collection and study procedures for the Alprazolam dataset were approved by
the University of Pennsylvania IRB; data collection for the PNC was approved
by IRBs from both the University of Pennsylvania and the Children’s Hospital of
Philadelphia. The GUSTO data collection was approved by the National Healthcare
Group Domain Specific Review Board and the SingHealth Centralised Institutional
Review Board. All participants provided informed consent before data collection.
The current study was approved by the IRB of the National University of Singapore.

Data, Materials, and Software Availability. The HCP data are publicly availa-
ble (https://www.humanconnectome.org)(93). The GUSTO dataset can be obtained
via a data transfer agreement (www.gusto.sg) (94). The PNC dataset is publicly
available in the Database of Genotypes and Phenotypes (https://www.nchi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2)(95).All phar-
macological imaging data necessary to evaluate the conclusions in the paper are
available here (https://github.com/ThomasYeolab/CBIG/tree/master/stable_pro-
jects/fMRI_dynamics/Zhang2024_pFIC/replication/Alprazolam) (96). Code for
this study can be found here (https:/github.com/ThomasYeoLab/CBIG/tree/master/
stable_projects/fMRI_dynamics/Zhang2024_pFIC) (97). Coauthors (T.Z. and LA
reviewed the code before merging into the GitHub repository to reduce the chance
of coding errors. Previously published data were used for this work (43-45, 47).
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